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1 Research on R. von MISES’s theory of the “collective”

My first publications, extremely modest, were my contributions to the Math-
ematical Colloquium that met in Vienna under the direction of Mr. Karl
MENGER, in which I participated thanks to an Arconati-Visconti scholarship.2

Mr. MENGER’s course dealt with geometry, especially the theory of dimension
initiated by H. POINCARE. I published two small notes in the proceedings of
the Colloquium. The first concerned the theory of so-called curves of quadratic
length, in which one studies the limit of the sum of squares of the edges of
an inscribed polygon [1]. The other concerned a proposition about the spaces
derived from metric spaces by replacing the distance by its square root; these
are also metric spaces, and if they contain two, three, or four points, they can
be embedded in a Euclidean space of 1, 2, or 3 dimensions. I showed that the
correspondence stopped at that number [2].

While attending the sessions of the Colloquium, I took part in discussions of
R. von MISES’s proposed new definition of probability, and the subject seemed
worthy of study to me. To understand the state of the question at that time, one
must pause a bit over the controversy concerning the definition of probability.
It had long been well known that if one undertakes a sequence of independent
trials that can each give rise to an event E or its contrary E, and if one writes
rn for the number of occurrences of E in the first n trials, so that fn = rn/n
is the frequency of E in these initial trials, then one obtains, writing p for the
probability of E, which is assumed to be constant,

lim
n→∞

Prob{|fn − p| < } = 1.

This constitutes the “weak” law of large numbers, conventionally expressed
by saying that fn tends in probability to p. This limit “in probability” is
not a limit of the kind defined in analysis and obviously could not give any
excuse for a definition of probability by means of a limit in the sense of analysis.

2Translator’s note: In the original, Ville writes “Asconati” rather than “Arconati.” He
made this error on numerous occasions.
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This situation changed completely when CANTELLI, using the results of E.
BOREL’s famous article on denumerable probabilities,3 known as the “mémoire
de Palerme,” succeeded in showing that

lim
n→∞

Prob{|fn−p| <  and |fn+1−p| <  and |fn+2−p| <  and. . . ad inf.} = 1,

making it appear that the probability of the event

lim
n→∞

fn = p,

the limit now being in the sense of analysis, was equal to one.
Mr. von MISES then proposed the following two-part definition of probabil-

ity:
1◦) If we undertake a sequence of independent trials, the frequency of E

tends to a limit.
2◦) By definition, this limit is the probability of E.
The first part is an assertion having the same properties as a law of nature;

the second is a definition in the proper sense of the term. Mr. von MISES’s
definition was completed by this condition:

3◦) The limit p is not changed if one selects from the sequence of results of
the trials an infinite partial sequence, using a “choice procedure” that decides
whether to choose or omit a result based only on the values of preceding results.

1◦) was called the axiom of the limit;
3◦) was called the axiom of choice procedure.
The probability calculus thus became the study of the properties of certain

sequences, those satisfying the axioms. R. von MISES called these sequences
collectives. The axiom of choice procedure permitted the exclusion of regular
sequences such as

E E E E E E . . . . . . ,

in which the frequency of E is obviously 0.5, but in which the value of the limit
changes if one implements the very simple choice consisting of keeping only
every second term.

R. von MISES’s axioms were obviously contradictory, because he considered
all choice procedures, which form a set with the cardinality of the continuum.
The restriction that a choice should only take account of the preceding results
was insufficient; there was no sequence satisfying his axioms.

So A. WALD, a participant in the Colloquium, proposed to limit the choice
procedures to a countable number, which he could do by saying

A collective in a deductive theory, which itself has only a finite
number of axioms and consequently permits us to formulate only a
countably infinite number of choice procedures, is a sequence such
that. . . .

3Translator’s note: Les probabilités dénombrables et leurs applications arithmétiques.
Rendiconti del Circolo matematico di Palermo 27:247–270, 1909.
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The axioms became noncontradictory, for the following simple reason:
If we represent an infinite sequence by a point on the segment (0, 1), the

probability law that the sequence satisfies defines a countably additive measure
on the segment. One can associate with every choice procedure the points rep-
resenting the sequences for which the axiom of choice procedure is not satisfied.
This set has measure zero with respect to the measure considered. Because we
are considering only a countable set of choice procedures, we are excluding from
the segment only a set of measure zero; the complementary set is not empty,
and there is no contradiction.

The issue seemed to be settled. It appeared possible to consider sequences,
defined starting with the deductive theory of “Principia Mathematica” for ex-
ample, which would have the properties of a random sequence—for which it
would be impossible, by the most ingenious manipulation, to modify the limit-
ing frequency.

I then asked myself the following question. We are given this:

Saying that a sequence of results enjoys a certain property with
probability equal to one comes down to saying that the sequences
not enjoying that property are represented by the points belonging
to a set of measure zero.

It seems that the demonstration of the first assertion consists of covering the set
of points representing sequences not enjoying the property with a set of measure
zero. This being acknowledged:

Do there exist sets of measure zero that one cannot cover with
sets of measure zero defined by the choice procedures?

In other words, do there exist properties provable in the classical theory but
not provable in the sense of R. von MISES (as completed by the work of A.
WALD)?

I was able to show that this was the case, i.e., that the category of sets of
measure zero defined as sets of points representing sequences that do not satisfy
an axiom of choice procedure is not large enough to cover all the sets of measure
zero. It is obvious that the sets of measure zero, countably infinite in number,
associated with a countably infinite number of choice procedures, cannot cover
all the sets of measure zero, but it is less obvious that there exists a set of
measure zero independent of the choice procedures, such that no matter what
infinitely countable set of choice procedures is adopted, one cannot cover it with
sets of measure zero associated with these choice procedures.

I was guided in my search for a proof by LIOUVILLE’s method of showing
that there exist nonalgebraic numbers; I considered not sequences where the
frequency was divergent but those where the frequency converged too rapidly.
Once I found the proof, I was able assert a very simple result:

To find a set of measure zero not coverable by the sets defined
by R. von MISES, it suffices to consider the sequences in which fn

converges to p unilaterally. They can be collectives in the sense of
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R. von MISES while possessing a peculiarity that the probability
calculus excludes.

2 The notion of martingale

I proposed the preceding results to M. FRECHET as a thesis topic, and he
was willing to accept it. I then proposed to replace R. von MISES’s axioms
with axioms that did not have the important gap I had brought to light. I
noticed that the impossibility of changing the frequency could be interpreted
as the impossibility of winning in a fair game using a martingale that excludes
certain trials; I wondered if it would be possible to go farther by generalizing
the martingale to permit continuous redistribution of the stakes. I had been
struck by a result of LAPLACE, according to which a gambler playing heads
and tails with a biased coin can gain an advantage on the first two flips with a
judicious distribution of the stakes, using the information that the coin is biased
but not knowing to which side.4

So I assumed that you start a game of heads and tails with a sum of money
equal to unity, and before each flip you have the opportunity to redistribute
the money you have at your disposition at that point depending on how the
previous flips have come out. By the results I had obtained previously, going
farther than R. von MISES’s methods required being able to take advantage of
fairly vague information, such as

In the sequence of draws, the frequency will tend to 1/2 from one
side, but we do not know which, nor from what point onward.

I realized that knowledge of any set of measure zero in which the point rep-
resenting the sequence was located would permit the construction of a strategy
that would win an amount of money exceeding any given limit. So I proposed
substituting the notion of “martingale” for that of “choice procedure.” Contra-
diction would be avoided if one talked about the (countable) set of assertable
martingales, and one would achieve consistency with the set of assertable sets
of measure zero, which was not the case with R. von MISES’s theory.

I generalized the notion of martingale, which emerged as a very valuable tool
for proof. Here is a simple example.

In BERNOULLI trials with probabilities p and q, it is very easy
to give a strategy guaranteeing one will have

r!(n− r)!
(n+ 1)!

p−rqr−n

4Translator’s note: In his Essai philosophique sur les probabilités, Laplace pointed out that
a coin with a small unknown bias has a slightly elevated chance of producing two heads (or
two tails) in two flips. For example, if the coin has probability 0.55 of coming up heads under
hypothesis 1 and probability 0.45 under hypothesis 2, and both hypotheses have probability
1/2, then the probability of two heads is 0.2525 instead of 0.25. A gambler who is allowed to
bet on heads at even odds can take advantage of this by betting $1 on heads on the first flip
and then betting $2 or $0 on the second, depending on whether the first came out heads or
tails. The expected value of his net gain is 3× 0.2525− 1× 0.7475 = $0.01.
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at the end of the nth trial, r being the number of times the event
of probability p happens.5 This expression is therefore bounded.6

STIRLING’s formula permits us to deduce from this the strong law
of large numbers and even the fact that r/n−p tends to zero at least
like


(log n)/n.

I was also able to demonstrate, using the idea of a martingale, the following
proposition that had been announced by KOLMOGOROV without proof:7

A necessary and sufficient condition for the number r of successes
in a sequence of BERNOULLI trials to satisfy

|r − np| < φ(n)


2npq

from some point onward with probability 1, where φ(n) is the se-
quence of values taken for integral t by an increasing function φ(t),
is that the integral 

φe−φ2 dt

t

converges as t tends to ∞.

This idea of a martingale also turned out to be useful to other researchers. I
was calling mathematicians’ attention to an idea that existed already, because
the word existed, but had not been considered important. The idea was taken
up by J. L. DOOB, who speaks about it in these terms: “Although many authors
had derived many martingale properties, in various forms, Ville was the first to
study them systematically, and to show their wide range of applicability.”8

The results of the studies mentioned above were published in various notes
in the Comptes Rendus and collected in the thesis that I defended in 1939 [4].
This thesis, with some additional material, became a book in the collection
“Monographies des Probabilités,” edited by Mr. E. BOREL [5].

3 Contribution to the theory of strategic games

Before I defended my thesis, I was charged by Mr. E. BOREL with writing up
the lectures he gave at the Sorbonne on the theme of games of chance. Mr.
E. BOREL called to my attention the article by J. Von NEUMANN in the

5Translator’s note: If we have seen r heads and n−r tails, we bet the fraction (r+1)/(n+2)
of our current capital on heads on the next trial and the rest on tails. Our capital is then
multiplied by (r+1)/(n+2)p if heads happens, by (n−r+1)/(n+2)q if tails happens. Ville’s
formula follows by induction, assuming that the initial capital is 1.

6Translator’s note: The expression is the gambler’s capital after the nth trial. By Ville’s
new principle, no strategy (martingale) will allow the gambler to get indefinitely rich (this is
the generalization of von Mises’s principle that no choice procedure can change the frequency
of heads).

7Translator’s note: See p. 103 of Ville’s book.
8J. L. DOOB: Application of the theory of martingales, in Le Calcul des Probabilités et

ses applications, Editions du C.N.R.S., 1949 (Colloques internationaux du C.N.R.S.).
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Mathematischen Annalen, in which he proved the “Minimax Theorem,” which
plays a fundamental role in the theory of games involving both chance and the
players’ abilities. The principles of the theory and the definition of strategy had
been formulated by Mr. E. BOREL, but there remained the question of whether
the minimum gain for one of the players, the gain he can guarantee himself by
maximizing the minimum that he might suppose the other player would allow
him, was or was not equal to the maximum gain to which the other player might
limit him by proceeding in the same way. In more concise terms, when A’s gain
G depends on the attitudes of both players, we want to know whether

max
(A)

min
(B)

G = min
(B)

max
(A)

G.

It seemed to me that J. Von NEUMANN’s proof did not take account of
the real nature of the problem, and I devised a new proof based on the theory
of convex sets. The simplicity of this new aspect of the problem allowed me to
generalize the theorem to the case where the strategies available to A and B
form continuous sets. The relation between the problem of these games and the
theory of convex sets, classical since MINKOWSKI, may seem obvious today,
but at the time I wrote my note, it was not. I allow myself to cite on this
point the opinion of J. Von NEUMANN, speaking about the evolution of the
problem:9

This connection may now seem very obvious to someone who first
saw the theory after it had obtained its present form. . . . However,
this was not at all the aspect of the matter in 1921–1938. The
theorem, and its relation to the theory of convex sets were far from
being obvious, witness the following facts:

(a) In 1921, and thereafter, Borel surmised the theorem to be
false or possibly false.

(b) In 1928, I proved the theorem by observing its relation to the
theory of fixed points and not yet to that one of convex sets.

(c) In 1935, I generalized it (for the purposes of the theory of
prices and production) by an even more explicit use of the fixed-
point method.

(d) It took ten years after my original proof, until J. Ville dis-
covered, in 1938, the connection with convex sets.

(e) Even now, this connection does not tell the entire, or the
simplest, story about the theorem, as the work since 1945 of S.
Kakutani, J. Nash, G. Brown, and myself shows.

I have subsequently worked on the theory of games only incidentally, in
lectures given at the Institut Henri Poincaré, where I showed in a simple way

9Translator’s note: Communication on the Borel notes, Econometrica 21(1):124–125, Jan-
uary 1953. Von Neumann was writing in response to a note by Fréchet that made a case for
the importance of Borel’s work on game theory. While reacting negatively to this (he had
done his own work without knowing of Borel’s), von Neumann went out of his way to praise
Ville. Von Neumann wrote in English, and Ville quotes the English.
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that the Minimax Theorem does not wrap up the question, even in a perfectly
determined game like chess, because while it does show a perfect player how to
play best against another perfect player, it does not give a perfect player the
means to take maximum advantage of an imperfect player [6].

4 Research on the definition of entropy in information theory

Having had to learn information theory in connection with problems of electrical
communication, I was displeased to see that the entropy

H = −


pi log pi

of a set of probabilities p1, p2, . . . , pn was introduced a priori.10

It was well known, obviously, that this function H had served statistical
thermodynamics very well, and experience had also shown it to be useful in
transmission problems, but I could not see the exact meaning of the expression.
I tried to interpret it as the minimum number of binary trials needed to discover
the state of a system that can take n states with the given probabilities, and
I showed that if you take the logarithms to base 2, this average number does
in fact fall between H and H + 1. Because M. SCHUTZENBERGER had also
undertaken the same investigation, we put the results together in a joint note
in the Comptes Rendus [7].

In my search for another interpretation, I was inspired by the existence of
machines that generate random binary digits, used in so-called Monte-Carlo
methods of computation. The problem of generating a very long sequence that
has the properties of a sequence of outcomes in the game of heads or tails
is already a quite difficult technical problem, because approximate cycles are
difficult to avoid. So if one needs a sequence of draws with probabilities p and q
different from 1/2, it is too extravagant to imagine constructing a machine that
provides this sequence directly; one should use an existing machine by coding
its output appropriately. I showed that the average number of draws from the
“standard” needed to obtain an element of a sequence of draws that should be
provided by the probabilities

p1, p2, . . . , pn, . . .

was precisely H.
This result brought my attention to the importance of the geometric mean

for certain questions in probability. In fact, H is just the logarithm, with the sign
reversed, of the geometric mean of the probability of the event that happens.11

I was then able to show that the degree of verification of a statistical hypothesis
is measured not by the probability of the event that has happened but by the
deviation from its mean value (in the sense of geometric mean) of the probability

10See for example C. SHANNON: Mathematical Theory of Communication.
11Translator’s note: e−H = e

P
pi log pi =

Q
p
pi
i .
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reversed, of the geometric mean of the probability of the event that happens.11

I was then able to show that the degree of verification of a statistical hypothesis
is measured not by the probability of the event that has happened but by the
deviation from its mean value (in the sense of geometric mean) of the probability

10See for example C. SHANNON: Mathematical Theory of Communication.
11Translator’s note: e−H = e

P
pi log pi =

Q
p
pi
i .
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of the event that has happened. Thus it is not necessarily the hypothesis that
gives the event the greatest probability that is best verified.

The results mentioned above were exposited in the lectures I gave at the
Institut Henri Poincaré [6].

5 Theory of electrical networks

On the purely technical side, I worked on propagation along cables with irregular
impedances [21], the phenomena of echoes and lags [22], and the combination
of linear networks. Although its purpose was essentially didactic, I highlight
the article on the synthesis of an impedance, where I put together results from
CAUER, PILOTY, LEROY, and where I introduced a new method of presenta-
tion to bring the question within the grasp of technicians. This method allows
the use of results on HURWITZ’s theory of polynomials that are hardly classical.
I showed that the inequality

| argZ(λ)| ≤ | arg λ|

is satisfied by a function Z(λ) of a complex variable that is positive in the
sense that Z(λ∗) = [Z(λ)]∗, and Reλ > 0 implies ReZ(λ) > 0. The proof
uses the physical meaning of the condition. I also showed that if h(λ) is a
HURWITZ polynomial and if ρ1 and ρ2 are complex numbers of modulus 1,
then the equations h(λ)+ρ1h(−λ) = 0 and h(λ)+ρ2h(−λ) = 0 have their roots
on the purely imaginary axis, and these roots are intermingled. This allows one
to show that every reactance (nondissipative impedance) is the quotient of the
even and odd parts of a HURWITZ polynomial [8].

6 Bringing information theory into the formation of probability as-
sumptions

My most recent work is in information theory, which I think should transform
the probability calculus. In a lecture to the Congrès de Philosophie des Sciences,
Paris (1949) [9], I explained the viewpoint that seems to me to emerge from the
development of this young theory.

Consider the information that one learns that the true values of the proba-
bilities of an event and its contrary are P and Q, whereas one had previously
believed them to be p and q. I defined the “value” of this information by the
expression, always positive or zero,

I = P log
P

p
+Q log

Q

q
.

This gives the information “the event happened” the value log(1/p), which be-
comes larger as p is made smaller. Because I is a measure of the advantage
knowledge of the event’s happening gives a gambler, these definitions provide a
practical vision of reality.

9
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They also permit the study of another question. Supposing p and q are given,
one can evaluate the mean value of the information provided by the happening
or failing of the event:

p log
1
p
+ q log

1
q
≤ log 2.

It is events that are equally probable for which that information has the greatest
value. To put it a different way, it is trials that have one chance in two to succeed
that are the most instructive. If p = q, there is a remainder

log 2− p log
1
p
− q log

1
q

not found in the information about the event. I proposed to attribute this
remainder to the information in the formation of the probability assumption.
This allows the reestablishment of complete symmetry between two operations,
prediction and making the assumption. We see in particular that the assump-
tion p = q = 0.5, which corresponds to the most instructive experiment, is
consequently the one that is never confirmed or disconfirmed as a probability
assumption.

These considerations were developed in the lectures I gave at the Institut
Henri Poincaré, in the chapter on probabilities and frequencies [6]. This is an ef-
fort to liberate the probability calculus as much as possible, from a foundational
point view, from the notion of frequency. The goal is to base the probability
calculus on direct interpretation of results. With these ideas, I succeeded in
clarifying the following paradox: if tails have probability 0.501 and heads prob-
ability 0.499, and if tails come up a thousand times in a thousand flips, we are
not satisfied, even though this is the most likely sequence of a thousand results.
I have clarified the paradox without evoking either frequency or BERNOULLI’s
theorem.

7 Contribution to the definition of correlation coefficients

In addition to lecturing on classical topics at the Universities of Poitiers and
Lyon, I have given some lectures where I have tried to introduce some personal
results.

At the College of France in 1942, I gave a course on statistical correla-
tion (PECCOT Foundation12). It was not published, but I have taken up and
completed some of the results in lectures at the Institut de Statistique at the
University of Paris [10].

In my course on matrix analysis, I generalized multiple and partial correla-
tion from the case where it is relative to a single unknown variable, i.e., the case
of the form

R1·23...n R1·2(34...n).

12Translator’s note: The Peccot Foundation awards a prize to a young mathematician
annually. The recipient lectures on his work at the College of France. Ville gave his lecture
in the first semester of the 1942–1943 academic year.
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By appropriately interpreting matrices extracted from the variance-covariance
matrix, I defined coefficients of the form

Rα·β Rα·β(γ),

where α, β, and γ are groups of indices for the variables.

8 Teaching matrix algebra

In the exposition of matrix theory [10], I introduced a new notation, in which Ψ
represents a parallelepiped of contravariant vectors, and Φ = Ψ−1 represents the
dual parallelepiped of covariant vectors, which allows us to express any matrix
A in the form of a product

A = Φ1Ψ2

and any linear operator in the form

T = Ψ3Φ4.

The theory of transforming coordinate systems becomes immediate, because
T ’s matrix in the coordinate system Ψ is

A = ΦT Ψ,

while the operator with coordinates A in the coordinate system Ψ is

T = ΨAΦ.

Apparently for the first time, I interpreted the operator associated with a
variance-covariance matrix in this way, and I showed what group of transforma-
tions leaves that operator invariant. This is useful in regression theory, where
the classical expositions are vague about the coordinate system of the deviations.

9 Teaching Boolean algebra

I gave a course on Boolean algebra that emphasized the solution of Boolean
equations, a subject that seems to be neglected in classical expositions but is
of great importance in the theory of logical machines. At the end of the course
I added some ideas about lattices, and I showed how the classical theorem of
logical intuitionism

Triple negation is equivalent to simple negation (even though
double negation is not equivalent to affirmation).

can be interpreted using a distributive lattice without complementation.
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10 Contribution to the theory of price indices

As part of my teaching at the University of Lyon, I investigated the theory of
price indices. I showed that one can compare two situations, one where goods
are sold in quantities qi at prices pi, the other where the same goods are sold
in quantities qi at prices pi, while distinguishing two elements in the variation
of the value


piqi, one corresponding to changes in the standard of living, the

other to changes in the value of money. The proportions of the two elements
vary between limits that can be calculated in some cases from the numbers
pi, qi, p


i, q


i. I deduced conditions for the existence of a utility function from this

theory, using considerations that involve the conditions for integrating a PFAFF
form [12, 13].13

11 Theory of signals with bounded spectra; their extension

In connection with my technical work, I had to concern myself with signals
with bounded spectra, i.e., functions s(t) for which the FOURIER transform
is zero outside a certain interval of frequencies. If the interval of frequencies
is (−fs,+fs), then the signal is known to be completely determined by its
instantaneous values at time points in an arithmetic progression with common
ratio 1/2f0 (Sampling Theorem14). I studied various properties of these signals,
showing how they could all be derived from the fundamental proposition that the
integrals of s(t) and s2(t) are expressed exactly by the sums that one substitutes
for them when calculating by the method of rectangles, provided the distance
between the successive equidistant points is less than 1/2f0. I extended the
theory to signals with bounded analytical spectrum, i.e., spectra of the form
Ψ(t) with Ψ(t) a holomorphic function of t in the domain Im t > 0.

I also considered the problem of analytically extending a signal with bounded
spectrum. Being an analytic function, such a signal can theoretically be calcu-
lated for t > 0 if one knows the values for t < 0, but WEIERSTRASS’s method
of analytical extension is physically inadequate. I started from the following
idea:

Because the signal is completely determined by its ordinates at intervals of
1/2f0 in the interval (−∞,∞), one should be able, by tightening the grid in
(−∞, 0), to define it sufficiently to be able to calculate the extension from those
ordinates, defined for negative abscissas in an arithmetic progression. In fact,
using the interval 1/6f0, I showed that the extension was possible by a procedure
that uses only discrete sequences of abscissas. I also undertook to define a linear
operator for the extension, which could be implemented in a prediction network,
and I showed the structure of the operations needed, a sequence of filters and

13Translator’s note: The contribution of this article has been analyzed by François Gardes
and Pierre Garrouste in “Jean Ville’s contribution to the integrability debate: The mystery
of a lost theorem,” History of Political Economy, 38(supplement):86–105, 2006.

14Translator’s note: In English in the original.
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modulations. In other words, I defined a linear functional

F


s(t)
t < t0


= s(t0 + h) h > 0

by a sequence of operations that suppress frequencies or instantaneous values
[14].

12 Research on the operator exp

x+ d

dx


and related topics

It is well known that the operator d/dx, which differentiates, and the operator x,
which multiplies by x, have a simple commutation law when applied to functions
f(x) with infinitely many derivatives. I considered the operator defined formally
by

exp

x+

d

dx



and developed it in a series. I showed that the operation results in the geometric
mean of the results obtained by separately applying the operators

exp{x} · exp


d

dx


and exp


d

dx


· exp{x}.

I used this result to discuss SCHRÖDINGER’s equation. In classical me-
chanics, we can associate with the joint distribution F (q, q̇) of q and q̇ (position
and velocity) a characteristic function

φ(u, v) =


exp{uq + vq̇}F (q, q̇)dqdq̇,

from which one can recover F (q, q̇). In wave mechanics, we have not F but a
wave function Ψ(q) playing almost the same role, but with the difference that
if position is associated with q, velocity is associated with the operator d/dq, so
that to obtain the distribution of two variables (in the rectangular case) starting
with a function of one variable Ψ(q), we must use a trick. I proposed looking
for a characteristic function and defining it as

M exp{i(up+ vq)} =


Ψ∗ exp

uh

d

dq
+ ivq


Ψdq.

Thus we use the operator mentioned earlier. We obtain in this way a con-
vention that allows the calculation of the distribution of p and q, a real function
of two variables, starting with Ψ, a complex function of one variable. The joint
distribution of p and q thus obtained is consistent with HEISENBERG’s un-
certainty relation, which allows us to think that the operator we introduced
formally corresponds to a physical reality [15].

This operator has also been useful to me in my work on instantaneous spec-
tra.
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13 Theory of instantaneous spectra

While studying the theoretical aspect of the demultiplication of frequencies,
which consists of associating with a signal s(t) whose spectrum occupies a cer-
tain band of frequencies a signal of the same duration whose spectrum occupies
a narrower band, I had to consider the notion of instantaneous frequency. In-
spired by GABOR’s work in communication theory, I associated with s(t) the
signal in quadrature σ(t) (HILBERT transform), which amounts to considering
s(t) as the real part of a function Ψ(t) of a complex variable t, holomorphic in
the upper half-plane. The instantaneous frequency is then the rotation velocity
of the argument of Ψ(t), so that the demultiplication consists of substituting the
real part of [Ψ(t)]1/n for s(t), where n is the demultiplication factor. Thanks to
this theory of instantaneous frequency, I was also able to introduce the notion
of the signal’s instantaneous spectrum. For this I had to use the operator men-
tioned earlier. On this occasion I also gave the mathematical definition of the
envelope of the signal, a notion particularly useful for theoretical calculations.
The definitions I gave bring out clearly the nature of the two bands of mod-
ulation and the characteristics of the transmission on the unique lateral band
[16].15

14 Signal theory

As a member of the U.R.S.I.,16 I was asked to participate in the work of the
C.C.I.R. (Comité Consultatif International des Transmissions Radioélectriques),
in the section “Waves and Signals.” My results on signaling theory were repro-
duced in the last chapter of my lectures at the Institut Henri Poincaré [6].

A channel’s transmission capacity is known to be proportional to the width of
the transmission band, and if the channel’s equivalent depends on the frequency,
it is tied to the curve of the amplitude as a function of the frequency, but
this relation has never been spelled out rigorously. I asked the question in
precise terms and showed that if the channel’s capacity, measured as telegraphic
capacity (number of signals discernible in a unit of time), was given by an
integral involving a FOURIER transform, the question involved a property of
the circulant determinants of a correlation matrix.

In the same line of studies, I served as a consultant at meetings of the
C.C.I.F. (Comité consultatif international des téléphones), where I helped draft
recommendations for the composition of quadripoles in transitory mode. I also
had to study signals with finite duration 2T having the greatest fraction of their
energy in a given frequency band. I gave an approximation for such a signal
[17]. As for its rigorous determination, I was able to show that it satisfied the
integral equation

s(t) = λ

 +T

−T

sin(t− u)
t− u

s(u)du,

15Translator’s note: For information on the influence of Ville’s work in this area, see Patrick
Flandrin’s Time-Frequency/Time-Scale Analysis, Academic Press, 1999.

16Translator’s note: Union Radio-Scientifique Internationale
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and that if it was unique, it was self-conjugate.

15 Miscellaneous research

In the field of statistical estimation, I published in 1941 an article dealing with
the following problem. Given a distribution f(x; θ) depending on an unknown
parameter θ, estimation of θ comes down to choosing f(x; θ) from a family of
permitted distributions. I studied the conditions under which the choice was
invariant with respect to a change of variables affecting θ and x and showed
that the invariant methods of estimation led to a metrization of the space of
distributions [18].

In the field of the classical probability calculus, I studied, given the n vari-
ables X1, X2, . . . , Xn, the variable

Z = | ±X1 ±X2 ± · · · ±Xn|

obtained by summing the variables, choosing the signs so that Z is minimized.
Because the choice of signs depends on the values of the variables, and because
Z is not an analytic function of the Xi, the problem is very difficult in its
generality. In the case where theXi are independent with a uniform distribution,
I was able to show that Z is less dispersed than the smallest of the variables Xi

[19].
I also published an article on the hydrolysis of polymers, which studied the

distribution of the lengths of cellulose chains in solution [20].

Translator’s note: The following list of publications was paginated separately
from the preceding text. A more complete list of Ville’s publications appears in
this issue of the Electronic Journal for History of Probability and Statistics.

Work cited in the summary

(C & T stands for the journal Câbles et Transmissions)

1. Ueber Kurven mit quadratischen Lange. Ergebnisse einer Mathematischen
Kolloquiums. Vienna 1935.

2. Ueber ein Satz von O. Blumenthal.17 Ergebnisse einer Mathematischen
Kolloquiums. Vienna 1935.

3. Sur la théorie générale des jeux où intervient l’habilité des joueurs. Note
in fascicle II of volume IV of Mr. Emile Borel’s Traité du Calcul des
Probabilités. Paris (1938).

4. Etude critique de la notion de collectif (Thesis Paris 1939).

17Translator’s note: The actual title was in French: “Sur une proposition de M. L. M.
Blumenthal.” The initials stand for Mr. Leonard M. Blumenthal.
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l’Université de Paris).

11. Cours d’Algèbre de Boole (Publications de l’Institut de Statistique de
l’Université de Paris).

12. Sur les conditions d’existence d’une ophélimité totale (Annales de
l’Université de Lyon. 1946).

13. The existence condition of a total utility function (Translation of the pre-
ceding) The Review of Economic Studies Vol. XIX no. 49.

14. Signaux analytiques à spectre borné. First part, C & T January 1950.
Second part, C & T January 1953.

15. Sur l’opérateur exp{x+ d
dx}. Note in the C.R. of the Academy of Sciences,

séance of 5 November 1945.

16. Théorie et applications de la notion de signal analytique. C & T January
1948.

17. In collaboration with J. BOUZITAT. Sur un type de signaux pratiquement
bornés en temps et en fréquence. (Bull. Tech. SOTELEC January 1955).

18. Sur la théorie invariante de l’estimation statistique. (Bull. Sc. Math.
1944).

19. Variables aléatoires équiréparties. C & T July 1949.

20. Essai d’une théorie de l’hydrolyse des polymères. Mémorial des Services
chimiques de l’Etat 1944.

21. Etude statistique des irrégularités d’impédance des câbles coaxiaux. Bull.
Soc. F. Elect. November 1944 and December 1944.

22. Limitation d’un trâınage par limitation de l’écho. C & T July 1950.

18Translator’s note: The initials “C.R.” stand for the Comptes Rendus of the Academy of
Sciences.
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15. Sur l’opérateur exp{x+ d
dx}. Note in the C.R. of the Academy of Sciences,
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