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About “Correlations” 
BRUNO DE FINETTI1

Résumé

Nous introduisons une représentation géométrique possible de le coefficient de corrélation, r, qui 
s’avère utile pour interpréter de façon intuitive les relations entre les espérances mathématiques, écart-
types et coefficients de corrélation. Nous commentons des cas particuliers, avant de montrer que, dans le 
cas général, dès lors que les lois de probabilité de deux variables aléatoires X et Y ont été définies, on ne 
peut plus attribuer arbitrairement au coefficient r(X, Y) n’importe quelle valeur entre -1 et +1. Nous 
prouvons que les deux bornes ne peuvent être atteintes que si les fonctions de distribution 1 et 2 sont 
toutes deux similaires, “anti-similaires”, ou (afin que les deux bornes soient atteintes) similaires et sy-
métriques. Enfin, nous clarifions le fait qu’un indice de concordance peut ne pas avoir le même signe 
que r, et nous proposons ce qui nous semble être l’indice de concordance le plus simple et le plus signi-
ficatif (et qui, à notre connaissance, n’a encore jamais été suggéré).

Abstract

We sketch one possible geometric interpretation of the correlation coefficient, r, which turns out to be 
useful to make the relationships among mathematical expectations, standard deviations and correlation 
coefficients intuitive. Then, after adding some remarks on special cases, we show that, in general, when 
the probability laws of two random variables X and Y have been assigned, it is no longer possible for 
r(X, Y) to assume an arbitrary value between –1 and +1. We show that the two bounds can be reached 
only if the two distribution functions 1 and 2 are, respectively, similar, “anti-similar”, or (in order to 
attain both bounds) similar and symmetrical. Finally, we clarify that a concordance index can have a 
sign different from that of r, and suggest what seems to us the simplest and most intrinsically meaning-
ful index of concordance (which has not yet been considered, as far as we know). 

1 Bruno de Finetti, “A proposito di correlazione”, Supplemento Statistico Nuovi Problemi, A. III, nn. 1-2, 521-38, 1937. 
English translation by Luca Barone (Goldman Sachs International, Peterborough Court, 133 Fleet Street, London EC4A 
2BB, luca.barone@gs.com) and Peter Laurence (Università degli Studi di Roma “La Sapienza”, Dipartimento di Mate-
matica “G. Castelnuovo”, Piazzale Aldo Moro, 2 - 00185 Roma, laurence@mat.uniroma1.it). 
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Introduction 
In the case of “correlations”, as indeed is often the case, many discussions arise from 
confusion between different concepts. For a long time we have seen papers demon-
strating and repeating that is necessary to distinguish between the concept of “correla-
tion” that is measured by the “correlation coefficient” r (of Bravais), and the concept 
of “stochastic dependence” defined in probability theory. If the need to clarify this 
point is so widespread, it certainly means that the confusion was also pretty wide-
spread, probably because the two concepts are equivalent in the case of Gaussian dis-
tributions and we have the unjustified and harmful habit of considering the Gaussian 
distribution in too exclusive a way, as if it represented the rule in almost all the cases 
arising in probability and in statistics, and as if each non-Gaussian distribution consti-
tuted an exceptional or irregular case (even the name of “normal distribution” can 
contribute to such an impression, and it would therefore perhaps be preferable to 
abandon it). 

I would not see any need to add a word clarifying the distinction between the two 
concepts  which should never had been confused and which (as far as I know) have 
always been kept well distinguished by researchers in the calculus of probabilities  if 
it didn’t seem to me that, discovering that the correlation coefficient doesn’t have the 
meaning that, for an incomprehensible misunderstanding, some attributed to it, we are 
left to think that this has deprived the correlation coefficient of every meaning. It would 
be like deciding that thrashing machines are useless because we proved to someone who 
confused them with mills that they don’t serve to grind the wheat! 

Therefore, I think it is not useless to give a brief exposition of the meaning of the 
correlation coefficient seen from the vantage point of the calculus of probabilities, in 
particular because some considerations may perhaps appear new, at least in the form 
and in the light in which they are cast from the standpoint of the theory of random vari-
ables. In addition, I will address in this article the issue of finding the most proper ter-
minology to avoid perpetuating the aforementioned misunderstanding and to obviate 
other drawbacks that we will run into along the way: however, the matter is so entan-
gled that, whenever I am unable to introduce satisfactory solutions, I will do no more 
than clarify what is the requirement we should fulfill to make the appropriate decisions. 

1 Mathematical expectation of second-order functions 
Given a random variable X, we indicate by M(X) the “mathematical expectation” and 
by (X) = M(X –M(X))2  the “standard deviation”, as usual. 

It is known that the mathematical expectation enjoys the additivity property M(X + 
Y) = M(X) + M(Y), and this is enough to resolve all the problems in which we have only 
linear combinations of random variables: in this case, knowing the mathematical expec-
tation is sufficient to solve the problem. Instead, if Z = f (X, Y) is a non-linear function 
of X and Y, or if, when such a function is linear, we need to have a deeper knowledge of 
the probability distribution of Z than can be gained by merely knowing its mathematical 
expectation, other elements are obviously necessary. The first such element is the corre-
lation coefficient, which is sufficient, together with M and , to solve all the “second-
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order” problems, in which we need to determine the mathematical expectation of any 
second-order function of given random variables X1 X2, ..., Xn. Among the second-order 
problems there are two of immediate practical interest, which are sufficient to prove the 
enormous importance of the correlation coefficient, and to explain why its presence is 
necessary: these are the problems arising when we need to determine the mathematical 
expectation of the product X Y of two random variables X and Y and the standard devia-
tion of their sum X +Y (an obvious generalization of the two problems is the calculation 
of the mathematical expectation of the product of two linear combinations of random 
variables, and in particular of the square of such a linear combination). 

To tackle the problem from a more general standpoint, let us consider a generic 
second-order function of n random variables X1, X2,..., Xn, and let 
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because M(Xj – X̄j) = M(Xj) – X̄j = X̄j – X̄j = 0. 
Therefore we can always determine M(Z) if we know, in addition to X̄i = M(Xi), the 

value of the terms M[(Xi – X̄i)(Xj – X̄j)].
When i = j we have by definition M(Xi – X̄i)2 = 2(Xi); instead, when i j, knowing 

M(Xi) and (Xi) is not sufficient to determine M[(Xi – X̄i)(Xj – X̄j) but it is enough to find 
a bound, from which the introduction of the “correlation coefficient” naturally follows. 

2 Basic properties of the correlation coefficient 
In fact, given two random variables X and Y, let us consider their linear combination 
Zt = X + tY, where t is a real number. We have 
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If we consider t as a parameter, then 2(Zt) is a second-order function of t. However, 
2(Zt) is, by its own nature, positive (or zero). Therefore, we must have i

)()(|)])([(| YXYYXXM (5)
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which is the bound we referred to earlier. We will immediately see that this bound is the 
most precise we can determine, in the sense that M[(X – X̄) (Y – X̄)] can actually assume 
all the values between ± (X) (Y) (extremes included). So it is natural to introduce the 
“correlation coefficient”, defined by 

)()(
)])([(),(

YX
YYXXMYXr (6)

that always lies between ± 1 and doesn’t depend on possible positive coefficients of 
proportionality which affect X and Y (in other words, if a > 0 and b > 0, r(aX, bY) = r(X,
Y). More generally, r(aX, bY) = ± r(X, Y) with sign +or – depending on whether the 
signs of a and b are equal or opposite). 

The general formula for the mathematical expectation of the product of two random 
variables X and Y is thusii

)()(),()()()( YXYXrYMXMYXM (7)

(from which we immediately learn that M(X Y) lies between M(X) M(Y) ± (X) (Y)),
while for the standard deviation of the sum we have 

)()(),(2)()()( 222 YXYXrYXYX (8)

(from which we see that (X + Y) always lies between | (X) – (Y)| and (X) + (Y)).
Depending on the sign of r(X, Y), we say that X and Y are positively or negatively 

correlated: they are positively correlated when M(X Y) > M(X) M(Y) or rather 2(X + Y)
> 2(X) + 2(Y); negatively correlated when M(X Y) < M(X) M(Y) or rather 2(X + Y) < 

2(X) + 2(Y).
If r = 0, or rather M(X Y) = M(X) M(Y), or rather 2(X + Y) = 2(X) + 2(Y), the two 

random variables are said to be uncorrelated. In particular, two stochastically independ-
ent random variables are uncorrelated, because it is known and can easily be seen that, 
in the case of independence, M(X Y) = M(X) M(Y). However, the converse statement 
does not hold. 

To show that r can indeed assume all the values between –1 and +1 it is sufficient 
to consider two independent random variables X and X' and, without losing generality, 
we can suppose that M(X) = M(X') = 0, (X) = (X') = 1, and then define, for a given r
lying between –1 and + l, the random variable Y as follows: 

'.1 2 XrrXY (9)

We have 
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3 Extreme cases 
On the other hand, the extreme cases r(X, Y) = ±1 imply that X and Y are linearly de-
pendent.iii Indeed, in this case the equation 2(Zt) = 0 has in fact the root t = ± 

(X)/ (Y) = k (sign – or + depending on whether r = +1 or r = –1).iv But for the ran-
dom variable to have a zero standard deviation, the probability of a deviation, greater 
than an arbitrarily small , from the mathematical expectation, must be equal to zero, 
that is, if we accept the extended principle of total probabilities (i.e. extended to 
countable classes), the random variable is equal to its mathematical expectation with 
probability 1. It follows that, in our case, if the probability is not zero then Zt = Zt̄, that 
is X – X̄ = k(Y – Ȳ).

However, I would also like to mention here the modification we need to make if we 
are to abandon the extended principle of total probabilities (as is necessary, in my opin-
ion). In such case we can have (X) = 0 and Prob.{|X – X̄| > } = 0 for any  > 0, without 
necessarily having Prob.{|X – X̄| > 0} = 0; for instance, if X = 1/n, with n being an “arbi-
trarily chosen whole number” (in the sense that such a whole number has zero probabil-
ity) we have X̄ = (X) = 0, but Prob.{X > 0} = 1. 

To avoid having to repeatedly reformulate a precise statement of this kind, and also 
to avoid innacuracies, as would have been, in the preceding case, the statement that nec-
essarily X – X̄ = k(Y – X̄), I think it is appropriate to introduce the symbol X =· Y, mean-
ing “X coincides with Y”, to point out that the inequality |X – Y| >  has zero probability 
for any  > 0, or rather that M(|X – Y|) = 0. We can now express, correctly and in a con-
cise way, our conclusion by saying that, if r(X, Y) = ±1, then X – X̄ =· k(Y – Ȳ),v where k
is positive or negative together with r. And the above statement will be exact both for 
those who accept and for those who do not accept the principle of total probabilities, ex-
cept for the different interpretation of the definition of “coincidence”. 

4 Geometric interpretation 
I will not dwell on the meaning of “correlation coefficient” as a statistical index of 
“concordance”, an aspect which has been often illustrated, including recently in these 
pages by Pietra (2); after all, the formula for M(X Y) contains the whole mathematical 
aspect of such a meaning. 

Rather it may be useful to sketch one possible geometric interpretation, which turns 
out to be useful to make the relationships among mathematical expectations, standard 
deviations and correlation coefficients intuitive. Since we can consider linear combina-
tions of random variables, we can interpret them as vectors in an “abstract space”. Con-
sidering (X) as the modulus of the vector X, and, correspondingly, (Y – X) as the dis-
tance d(X, Y) between the vectors X and Y, we define a distance space, or space “D” in 
the sense of Fréchet, under the hypothesis that all the random variables whose 
difference is given by the same variable are represented by the same vector. In fact X
and X + a have zero “distance”, because (X + a) – X = a, (a) = 0, and inversely (Y – 
X) = 0 means Y – X = a. In every other case (Y – X) > 0, and (as we basically saw in 

                                                
2 See this Supplemento, A. II, no. 2-3, 1936 (L'ostracismo al coefficiente di correlazione?). 
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Section 3) the triangle inequality holds:vi

.)()()(|)()(| XYXYXY (12)

In addition, the space S defined in this way is a metric abstract space, or space DM,3

since (X) (Y) r(X, Y) may be interpreted as an inner product, being a symmetric lin-
ear homogeneous function of X and Y, which reduces to the square of the modulus when 
Y = X. Thus the correlation coefficient is the cosine of the “angle” between vectors X
and Y, angle that can be unambiguously defined by setting r(X, Y) = cos (X, Y), 0 

(X, Y)  (that is,  goes from 0° to 180°). 
So formula (8) for 2(X + Y) becomes 

),(cos)()(2)()()( 222 YXYXYXYX (13)

and we can see, recalling the theorem of Carnot, that (X + Y) is the third side of a tri-
angle when the other two sides, (X) and (Y), contain the angle (X, Y). In the case of 
zero correlation (or, in particular, of independence) the theorem of Pythagoras holds: 
(X + Y) is the hypotenuse of the right-angled triangle whose sides measure (X) and 
(Y).

Likewise, the formula for M(XY) says that the corrective term to be added to 
M(X).M(Y) is the inner product of the representative vectors of X and Y, that is (X) (Y)
cos (X, Y). 

Zero correlation means orthogonality; instead, positive or negative correlation 
means that  is respectively acute or obtuse; the extreme cases r = ±1 say that  = 0 and 

 = , respectively, or rather that the two vectors (and therefore the random variables, 
up to a positive constant) only differ by a multiplicative constant, which may be, respec-
tively, either positive or negative. 

Many well known properties of metric spaces can suggest images of help in 
studying and solving various problems. Every random variable Y can be decomposed
into two components, one correlated with X (the parallel component) and one uncorre-
lated with X (the orthogonal component). More generally, given n random variables 
X1, X2, ... , Xn that are linearly independent (that is, such that there are no coefficients 
a0, a1, a2, ... , an for which a0 = a1 X1 + a2 X2 + ... + an Xn), we can express them as lin-
ear combinations of n uncorrelated random variables Y1 Y2 ... Yn with unit average 
standard deviation (orthogonal unit system) with M(Yi) = 0, (Yi) = 1, r(Yi, Yj) = 0 (i
j), while for  the usual expression of the vector’s modulus holds. 

If (X, Y) is the angle between two random variables X and Y, a third random 
variable Z cannot form two arbitrary angles (X, Z) and (Y, Z), but we must have 
(obviously, if we think of the geometric picture) (X, Y) (X, Z) + (Y, Z)  2  – 

(X, Y)vii we have the extreme case (X, Z) + (Y, Z) = (X, Y) if and only if Z = aX + 
bY, a > 0, b > 0 (the coplanar vector, included in the concave angle between the two 
vectors), and the other (X, Z) + (Y, Z) = 2  – (X, Y) if and only if Z = –(aX + bY) a
> 0, b > 0 (the aforementioned condition applied to minus the same vector). This 
shows that there are some constraints for the degrees of pairwise correlation among 

                                                
3 See my note Spazi astratti metrici (DM), «Atti Accad. Pontificia», A. LXXXIII, sess. VI, 1930. 
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different random variables. In particular, if three random variables are all equally cor-
related, since - two by two - they are unable to form an angle bigger than 2 /3 (that is 
equal to 120°), the correlation coefficient cannot be smaller than –½. 

Analogous constraints subsist for four or more random variables, and it may be 
interesting to extend the preceding search to the case of several random variables with 
equal pairwise correlations. So, let’s consider n equally-correlated random variables 
X1, X2 ... Xn; for convenience we suppose that they have a zero mathematical expecta-
tion and the same standard deviation  (this alters the moduli but not the angles of the 
vectors!).We will show that, under this hypothesis, the necessary and sufficient condi-
tion for the correlation coefficient to reach the least possible common value is that Xi = 
0. In fact, setting Y = (1/n) Xi, Yi = Xi – Y: if Y  0, we get a new set of n equally-
correlated random variables Y1, Y2 ... Yn with a smaller correlation coefficient.viii We will 
now prove this. In the first place it can be seen that Y is uncorrelated with every Yi; let’s 
prove this for Y1:

n
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(where ' stands for the sum extended to the terms with i j);
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and this, given that, M(Y) = M(Yi) = 0, implies r(Y, Y1) = 0. 
Therefore M(Yi Yj) = M(Xi Xj) – 2(Y) (in fact Xi Xj = (Yi + Y) (Yj + Y) = Yi Yj + Y(Yi

+ Yj) + Y2, and the second term has M = 0), and in particular for i = j
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where 0 = (Y), while for i j, M(Yi Yj) = 2r – 0
2.

Thus we have 
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If Xi = 0 we have 2( Xi) = 0, 

or ,0)1()'()( 2222 rnnnXXXMXM jiijiii (18)

so that :
1

1
n

r (19)

we thus get the least level of r and the proof that the condition Xi = 0 is also sufficient. 
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This reasoning becomes intuitive if we think about its vector interpretation: n vec-
tors of Sn, in order to form – two by two – the same angle (as large as possible), must 
have the same direction of the rays that connect the centre O of an equilateral simplex to 
its vertexes; the angle  of two of these vectors is given by cos  = –1/(n – 1). There-
fore, if we have an infinite set of random variables X1 X2... Xn ... (or a set that can be 
made arbitrarily large, e.g. by multiplying the “observations” of a phenomenon), they 
cannot be equally correlated unless they are uncorrelated or positively correlated; this 
conclusion can be interesting because it shows a deep intrinsic difference between the 
possibilities that a positive correlation and a negative correlation may appear. However, 
more than for the question’s intrinsic interest, the analysis of the present problem is in-
tended to give an example of the usefulness of vector interpretation in suggesting pro-
cedures and calculations and making them intuitive. In this regard, we still have to ob-
serve that the simple procedure showing that r(X, Y) can assume all the values between 
–1 and +l was also suggested by a geometrical consideration. Given two unit orthogonal 
vectors, u and v, it is obvious that u cos  + v sin  is a unit vector that forms an angle 
with u.

5 On the theorem of Pythagoras 
Instead of using the same vector to represent all the random variables whose 
difference is given by a certain constant, we can adopt a representation in which only 
the coincident random variables are represented by the same vector. If, as the distance
d'(X, Y) between the random variables X and Y, instead of (X – Y), we consider 

M(X – Y)2, we have d'(X, Y) = 0 if and only if X =· Y. However, this representation is 
not totally new: since 

222 )]([)]([)( XXMXM (20)

we can immediately see that every vector of the new space S' can be decomposed in two 
components that are orthogonal to one another: the first component represents a fixed 
number (that is X̄), the other a random variable with zero mathematical expectation. In 
other words, writing X = X̄ + (X – X̄) the two components X̄ and X – X̄ are orthogonal. 
The first is a pure fixed number, or rather the component along the “axis of real num-
bers”, and its “modulus” is the “modulus” or “absolute value” in the usual meaning (|X̄
|); for the second component we have (by definition) M(X – X̄)2 = 2(X), so that the 
hyperplane orthogonal to the axis of real numbers is the space S considered in the pre-
ceding section; we can therefore think of it as the projection of the space S' (X and Y are 
represented on the same vector of S if X – Y = , that is X – Y is parallel to the axis of 
real numbers along which the projection is made). 

Therefore, the observation of Pietra (4) that the relationship between M(X2), M(X)
and (X) is graphically translatable into the theorem of Pythagoras, assumes a precise 
geometric meaning in S': the quadratic average M(X2) is the modulus of the vector rep-
resenting X, while M(X) and (X) are the moduli of the two orthogonal components X̄
and X – X̄.

                                                
4 See this Supplemento, A. II, no. 2-3, 1936 (Il teorema di Pitagora e la Statistica). 
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6 Remarks on special cases 
It may be of interest to add some remarks on special cases. 

The simplest case, that of events, introduces the notable particularity that, for 
these, zero correlation implies stochastic independence. Let E' and E" be two events 
and E = E'E" their simultaneous occurrence. The probabilities are p' = P(E'), p" = 
P(E"), p = P(E), and the standard deviations are ' = p'q', '' = p''q'' (as usual, q' = 
1 – p', q" = 1 – p''). We thus have p = p'p" + r ' '' and p = p' p'' ix (stochastic inde-
pendence) if and only if r = 0. In general, the equivalence between the two concepts of 
zero correlation and independence subsists when each of the two random variables X
and Y is allowed to assume only one out of two possible values, x1 and x2, yl and y2

(strictly speaking: if they “coincide” with two random variables X' and Y' that have 
such a property: X =· X', Y =· Y'). In any other case (we will soon prove it) the concept 
of independence is actually more restrictive than that of no correlation. 

In the case of events, we can give a formula for r that reveals its meaning from an-
other point of view. Let p'(1 + ) be the probability P(E'/E") of E' conditioned by E':
then  = 0 in the case of independence,  > 0 and  < 0, respectively, in the case of posi-
tive or negative correlation. In addition P(E"/E') = p"(l + ) (in essence, this gives 
Bayes theorem). We can thus write 

'''r''p'p''p'pp )1( (21)

so that 

''p'p'''r (22)

In addition, if (using “Ē ” to denote the negation of “E”) we set 

),1(),(),(),( ''q'qq''E'EPq''EP''q'EP'q (23)

we obtain 

'''r''q'q''q'qq )1( (24)

and thus 

''q'q'''r (25)

By multiplying these two expressions we obtain 

,''q''p'','q'p',''q''p'q'p'''r 2222 but (26)

and finally r 2 (27)

(and we immediately see that the sign of r is equal to that of  and , which necessarily 
have the same sign). Therefore, the correlation coefficient expresses the geometric mean 
of two coefficients: the coefficient of increase (or decrease) of the probability of an 
event occurring if the other occurs and the coefficient of increase (decrease) of the event 
not occurring, if the other does not occur.

Another related remark is that, once the probabilities p' ad p" have been assigned,
the correlation coefficient r cannot vary between –1 and +1, but only between –
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p' p" / q' q" and + p' q" / q' p" (under the hypothesis that p' < p", p' + p"  l; in the 
other cases we should exchange p' with p" and the p-s with the q-s, respectively). The 
lower bound is –1 only if p' + p'' = 1, the upper bound is +1 only if p' = p'' and thus only 
for p' = p'' = ½ are the two bounds ±1. But the two limits, let’s call them rl ad r2, may be 
close to zero (it is sufficient to take a very small p'); more generally, once we arbitrarily 
choose rl and r2, provided, as it is necessary, that –1 rl < 0 < r2  1, we can determine 
p' and p'' in such a way that 

''p'q''q'pr''q'q''p'pr /,/ 21 (28)

(the solution is unique, and is given by p' = – rl r2 / (1 – rl r2), p'' = – r2 / (r2 – rl)).

7 Bounds, zero correlation and independence 
The conclusions we reached in the special case of “events” show that, in general, 
when the probability laws of two random variables X and Y have been assigned, it is 
no longer possible for r(X, Y) to assume an arbitrary value between –1 and +1; after all 
it is obvious, since we must have X = a Y + b (a > 0) and X = a Y + b (a < 0), that the 
two bounds can be reached only if the two distribution functions 1 and 2 are, re-
spectively, similar ( 1( ) = 2(a  + b), a > 0), “anti-similar” ( 1( ) = = 1 – 2(a  + 
b), a < 0), or (in order to attain both bounds) similar and symmetrical ( 1( ) = 2(a  + 
b) = 1 – 2(–a  + b)).

In general, the two extreme values r1 and r2 can be achieved if we consider the two 
extreme cases in which one of the two random variables X and Y is a decreasing or in-
creasing function of the other; in the latter case, if X assumes the value  such that 1( )
= t, Y assumes the value  such that 2( ) = t; in the opposite case, to  such that 1( ) = 
t corresponds  such that 2( ) = 1 – t. Using (t) and (t) to denote the values for 
which we have, respectively, 1( ) = t and 2( ) = t (inverse functions), the correlation 
coefficients for the two extreme cases we considered are 

dtttrdtttr )1()()()(
1

0

1

0
(29)

provided that we consider “normalized” X and Y so that their mathematical expectation 
is zero and their average standard deviation is equal to 1. (5)

To show that the cases considered truly achieve the extreme values r2 and rl, first of 
all, observe that, if the support of the probability distribution in the plane ,  consisted 
of two points 1, 1 and 2, 2 with 2 > 1 but 2 < 1 , to which we assign equal prob-
ability, then the correlation would increase by the quantity p( 2 – 1) ( 1 – 2) if we dis-
place the support of the two probabilities to the points 2, 1 and 1, 2, and this does no 
change the distributions 1 and 2. Except for some further refinement and corrective 
terms that can be made negligible, the same reasoning holds for probabilities not con-
centrated in exactly the two points 1, 1 and 2, 2, but supported in their neighborhood. 
As long as (t) is not equal to (t), we can increase r with the above-mentioned inver-

                                                
5 Note that dt can be interpreted as cosine of the angle between the two functions  and  in the functional space, so 
that the upper bound of cos(X, Y) is the cosine of (t) and (t) in the functional space. Similar considerations for the 
minimum link the metric for the space of random variables to the functional space. 
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sion procedure, and analogously we can diminish r until (t) is equal to (1 – t).
Finally, we close by completing a proof we left unfinished: that zero correlation and 

independence coincide only if both 1 and 2 have all their probability mass concen-
trated on two points. Let’s choose a value a (between 0 ad 1) in such a way that 

atta
att

if)1(
if)(

(30)

corresponds to (t).

We have ,)1()()()()(
1

0 a

a
dttatdtttar (31)

and, as a varies between 0 and 1, r(a) varies continuously between the extremes r2 and 
r1. For a certain value a = a0 we have r(a0) = 0. We immediately see that such a distribu-
tion, is uncorrelated and does not coincide, except in the case mentioned earlier, with 
the distribution in the case of independence. We can also note that, for every r between 
r1 and r2, the distribution is unequivocally determined for 1 and 2 having probabili-
ties concentrated in only two points, while in any other case we have infinite solutions. 

8 Terminology 
In this note I have always used the term “correlation” in the meaning pertaining to the 
“correlation coefficient”. But, as we noted at the beginning, this term has been used 
with many different meanings, and there are different opinions on the terminology that 
would be best to adopt to avoid any possible misunderstanding. We will briefly exam-
ine the matter, the proposals that have been made and those that could be made. 

As noted, one of the meanings in which the term “correlation” has been used is that 
corresponding to the “stochastic dependence” of the calculus of probabilities; to meas-
ure degrees of “dependence” (or rather, as it is always better to say when dealing with 
indices, “to determine a number that gives an idea of such a degree of dependence”) in-
volves defining an index with the property that its extreme values are assumed in the 
two extreme cases in which X and Y are stochastically independent or are functions one 
of the other, and intermediate values in the other cases, closer to this or that extreme, 
depending on how strict, based on a certain (largely arbitrary) criterion, this dependence
is. Unlike the correlation coefficient r, whose basic element is the sign, the dependence 
index can only vary between 0 and 1 (when functional independence and dependence 
corresponds to the values 0 and 1). 

As regards the terminology, we could: 
o decide to preserve the term “correlation” in the sense of “stochastic dependence” in 

which it was improperly used, on the other hand agreeing to abandon it in every dif-
ferent sense; or 

o use the term “dependence”, adding on the specification “stochastic”, as is the usage 
in the calculus of probabilities; or finally 

o introduce a new and different term. 

This last solution seems the best, because the term “correlation” is more appropriate in 
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the sense in which we used it here, while that of “dependence”, if we don’t want always 
add the term “stochastic”, may often cause ambiguity with the concept of functional de-
pendence. This drawback has become a sensitive issue since for some time now, in the 
calculus of probabilities, we apply both meanings of dependence to random variables; 
besides, it is not desirable for such disparate notions to be denoted by the same word, 
leaving to an adverb the duty to distinguish between them. This solution is appropriate 
when we need to distinguish between several particular variants of the same notion, as 
in the locutions “linearly dependent”, “algebraically dependent”, that refer to particular 
aspects of “dependence” in only one sense, that of the analysis. 

However to find a new word is not an easy task. On the one hand we want a word 
that makes the meaning intuitive, as is necessary since the term refers to a concept of 
current use among practitioners (for instance, in the insurance industry) and should be-
come part of every day language. On the other hand, the word should enjoy many of the 
grammatical possibilities that are intrinsic in the word dependence and that are useful, if 
not necessary, in the calculus of probabilities. In fact it generates, both for the affirma-
tion and for the negation, the name, verb, adverb, and adjective, usable in transitive or 
reflexive sense (see the following table) 

X dependent on Y X independent of Y
X and Y (mutually) dependent X and Y (mutually) independent
dependence independence 
X depends on Y X does not depend on Y 
X, dependently on Y, X, independently of Y, 

The term “connection”, proposed by Gini and Pietra, gives the adjective connected that
may be used in both ways (connected (among themselves), and connected with), but the 
verb and it’s negation seem to me unusable (to connect, disconnected). As for the mean-
ing, connection recalls something rigid, and to say that some risks are connected does 
not seem to me well suited to the idea. 

One could propose “influence” (influenced by, influencing, mutually influencing,
influences, they influence each other); as regards the meaning, I would consider such a 
word as the ideal solution, because it renders impeccably the precise meaning of “sto-
chastic dependence”, but it has the serious defect of not possessing a negated form: the 
negation with the “not” (mutually not influencing, etc.) would be rather heavy, even 
more than mutually influencing.

One could propose “tie” (tied (to each other), tied to) that has grammatical defi-
ciencies analogous to those of “connection”, but it seems to me more consistent with the 
meaning: “to tie” is to unite but in more elastic way than “to connect”. Besides, saying 
for instance that two risks are tied to each other, it seems to me that the meaning is clear 
independently of the possible convention to introduce such a terminology in the scien-
tific language. After all, the French already use the term “loi liée” to point out the prob-
ability distribution of a random variable corresponding to a certain value of another: if 
such a random variable is said to be “tied to”, the expression “tied to distribution” 
(translation of “loi liée”) would be by itself connected to the term explaining the general 
concept.
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As a final comment, we may remark that “correlation” (which we have excluded for 
reasons of another nature) would not be grammatically opportune. 

Does some other appropriate but flexible word exist for our purposes? It would be 
worthwhile to look for it before taking a decision: however, having to choose among the 
terms considered, I would give my preference to one of the last two (influence or tied 
to).

9 Concordance vs correlation 
The other meaning is that for which Gini and Pietra have proposed the term “concor-
dance” (respectively, discordance, indifference). Such a concept is analogous to, but 
more general than, that of strict correlation (corresponding to r). It is analogous be-
cause it concerns the tendency of a random variable to generally assume a greater or 
smaller value according to the greater or smaller value assumed by the other. We thus 
have to distinguish the direction (concordance or discordance) as in the case of corre-
lation (positive or negative). But the concept of concordance is more general because 
it generically covers all the aspects under which such a tendency can be considered 
and studied (aspects that can be measured by other indices that have been proposed 
as those of omofilia).

Given the role that the correlation coefficient r plays in the calculus of probabilities 
(which I have tried to shed some light on), I believe that it would be a good idea to fol-
low the proposal of Gini - Pietra by adopting the term “concordance” for the general 
meaning, but reserving that of “correlation” only for the meaning corresponding to r.
Otherwise the term “positively correlated” would not have any defined meaning, be-
cause it is not necessarily the case that another index of concordance must always take a 
positive, negative or zero value depending on whether r is positive, negative or zero. 

Instead, according to Fréchet, it would be a good idea to call r “index of linearity” 
(he would reserve the term “correlation” for the meaning of “stochastic dependence”). 
However, such a terminology would not allow us to deduce the equivalent of the ex-
pressions “correlated”, “positively or negatively correlated”, “not-correlated”, terms 
that, as we have seen, are essential in the calculus of probabilities. Besides, it seems to 
me that it corresponds to a rather limited idea of the meaning of r, that would indicate 
only the tendency towards a “linear regression”. Instead, the fundamental meaning of r,
which we have tried to shed light on, is completely independent of whether the prob-
ability distribution tends to be concentrated along a given line, and of whether this, 
when it exists, is a straight line or a curve. The only difference is that, if such line is 
straight, r can give an idea of the accumulation of the distribution around it; if such line 
does not exist, no misunderstanding can arise, while if it exists and is curved we need to 
be warned that r does not allow the conclusion that subsisted in the case of linear re-
gression.

10 An index of concordance 
One final remark is in order. Its purpose is to clarify that a concordance index can 
have a sign different from that of r, and to suggest what seems to me the simplest and 
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most intrinsically meaningful index of concordance (which has not yet been consid-
ered, as far as I know). To express it in the simplest way, let us consider a particular 
case: given the distribution of marriages according to the ages of the consorts, let us 
consider the probability that, choosing two couples at random and independently, the 
younger girl is the wife of the younger boy. Indicating by X1 and Yl, X2 and Y2 the age 
of the bridegroom and his bride in the two couples, we have to consider the probabil-
ity c that 

,0))(( 2121 YYXX (32)

and, if (x, y) dx dy is the probability that the ages of the consorts are between x and x + 
dx, y and y + dy, respectively, we can write 

dddydxyxc
C

),(),( (33)

where C is the domain defined by (x – ) (y – ) > 0, which is bounded by the planes x = 
, y = . We can consider c as an index of concordance: we would have concordance, 

discordance or indifference if c is greater than, smaller than or equal to ½, respectively; 
we would have c = 1 and c = 0 only in the extreme cases in which the age of the bride is 
an increasing or decreasing function, respectively, of the bridegroom’s age. 

It is easy to see that c does not necessarily have the same sign as r: it is sufficient to 
note that c remains unchanged if we substitute X and Y with two increasing functions, f
(X), g(X) (in fact, in this case [f (X1) – f (X2)] [g(Y1) – g(Y2)] has the same sign as [X1 – 
X2] [Y1 – Y2]) while r(X, Y) and r[f(X), g(Y)] may well have different signs (6).

Despite the difference of behavior, c and r share a common meaning that it is worth 
explaining. If, besides the sign, we also want to consider the value of (X1 – X2) (Y1 – Y2),
to give a weight proportional to the differences X1 – X2 and Y1 – Y2, we should substitute 
the integral for c with the following 

][

),(),()()(

12212211 YXYXYXYXM

dddydxyxyx
(34)

and it is easy to see that this expression is equal to 

.),()()(2 YXrYX (35)

Therefore, the meaning of c can be considered analogous to the meaning of r, when we 
observe the direction of the inequalities but omit their order of magnitude.

                                                
6 For instance, if the possible values for (X, Y) are 
 (–1,1) with probability 1/4
 (0, –1) “ “ 1/2
 (a, 1)  “ “ 1/4 
we have r(X, Y) = 0 when a = 1; changing a (between 0 and , extremes excluded), that is by substituting X with its in-
creasing function ga (X) = X + [(a – 1)/2] X (X + 1), 
we get r > 0 when a > 1, r < 0 when a < 1. 
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Editors’ notes 
                                                
i Since the quadratic function 2(Zt) = at2 + bt + c must always be non negative, its discriminant, D = b2 – 4ac, must be 
non-positive. In this case, a = 2(Y), b = 2M(X – X̄) (Y – Ȳ), c = 2(X). By substituting these values in b2 – 4ac  0, the Au-
thor gets the inequality (5). The Italian version has an incorrect |M[(X – X̄)(Y – Ȳ)]| < (X) (Y). We corrected the 
typo.
ii If, in Equation (1), n  2, aij  1, Xi X, Xj Y, then Z = XY. In this case, Equation (3) gives M(XY) = X̄Ȳ + M[(X – X̄)(Y
– Ȳ) = M(X)M(Y) + M[(X – X̄)(Y – Ȳ). Substituting Equation (6) in the last expression gives Equation (7). 
iii If r(X, Y) = r = ±1 in (11) then Y = ±X in (9). 
iv If r(X, Y) = ±1 then M[(X – X̄)(Y – Ȳ) ]= ± (X) (Y) in (4). Therefore, by using the notation introduced in endnote i, b = 
2M(X – X̄) (Y – Ȳ) = ±2 (X) (Y) and t = (–b ± b2 – 4ac)/(2a) = [+̄2 (X) (Y)]/[2 2(Y)] = +̄ (X)/ (Y). 
v The Italian version has an incorrect X – Ȳ =· k(Y – Ȳ). We corrected the typo. 
vi This formula follows from (8), page 4. 
vii The Italian version has an apparently incorrect  – (X, Y). We corrected the typo. 
viii The Italian version has an incorrect Xi = Xi – Y. We are grateful to an anonymous referee for pointing out this 
typo.
ix The Italian version has an incorrect p = p p''. We corrected the typo. 


