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Abstract. This paper presents a historical view of the well-known k-means al-
gorithm that aims at minimizing (approximately) the classical SSQ or variance
criterion in cluster analysis . We show to which authors the different (discrete and
continuous) versions of this algorithm can be traced back, and which were the
underlying applications. Moreover, the paper describes a series of extensions and
generalizations of this algorithm (for fuzzy clustering, maximum likelihood cluster-
ing, convexity-based criteria,...) that shows the importance and usefulness of the
k-means approach and related alternating minimization techniques in data analysis.

1. Introduction

Cluster analysis emerged as a major topic in the 1960’s and 1970’s when the
monograph ’Principles of numerical taxonomy’ by Sokal and Sneath (1963)
motivated world-wide research on clustering methods and thereby initiated
the publication of a broad range of books such as ’Les bases de la classification
automatique’ (Lerman 1970), ’Mathematical taxonomy’ (Jardine and Sibson
1971), ’Cluster analysis for applications’ (Anderberg 1973), ’Cluster anal-
ysis’ (Bijnen 1973), ’Automatische Klassifikation’ (Bock 1974), ’Empirische
Verfahren zur Klassifikation’ (Sodeur 1974), ’Probleme und Verfahren der nu-
merischen Klassifikation (Vogel 1975), ’Cluster-Analyse-Algorithmen (Späth
1975, 1985), and ’Clustering algorithms’ (Hartigan 1975). With the conse-
quence that the basic problems and methods of clustering became well-known
1 Institute of Statistics, RWTH Aachen University, D-52056 Aachen, Germany. A
shorter version of this article has been published in the Festschrift for E. Diday
published by Brito et al. (2007).
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in a broad scientific community, in statistics, data analysis, and - in particu-
lar - in applications.

One of the major clustering approaches is based on the sum-of-squares (SSQ)
criterion and on the algorithm that is today well-known under the name ’k-
means’. When tracing back this algorithm to its origins, we see that it has
been proposed by several scientists in different forms and under different
assumptions. Later on, many researchers investigated theoretical and algo-
rithmic aspects, and modifications of the method, e.g., when considering ’con-
tinuous’ analogues of the SSQ criterion (Cox 1957, Fisher 1958, Engelman
and Hartigan 1969, Bock 1974), by investigating the asymptotic behaviour
under random sampling strategies (Hartigan 1975, Pollard 1982, Bock 1985),
and by extending its domain of application to various new data types and
probabilistic models. Later on, Diday’s monograph (Diday et al. 1979), writ-
ten with 22 co-authors, marks a considerable level of generalization of the
basic idea and established its usage for model-based clustering.

This article surveys the origins and some important extensions of the k-means
algorithm. In all situations the problem consists in partitioning a set of n ob-
jects or of n data points x1, ..., xn (or even a space X , e.g., IRp) into a fixed
known number k of non-empty disjoint classes (clusters) C1, ..., Ck, say, that
are ’as homogeneous as possible’ with respect to some given data2. In Section
2 we formulate the SSQ clustering problem and the k-means algorithm. Sec-
tion 3 describes the most early papers proposing the SSQ criterion and the
k-means algorithm. Section 4 concentrates on extensions of the SSQ criterion
that lead to so-called generalized k-means algorithms. Section 5 is devoted
to the fuzzy k-means algorithm. Finally, Section 6 deals with one- and two-
parameter criteria and shows how a ’convexity-based’ clustering criterion can
be minimized by a k-tangent algorithm.

2. k-means clustering for the SSQ criterion

There are two versions of the well-known SSQ clustering criterion: the ’dis-
crete’ and the ’continuous’ case.

Discrete SSQ criterion for data clustering:Given n data points x1, ..., xn

in IRp and a k-partition C = (C1, ..., Ck) of the set O = {1, ..., n} of underly-
ing ’objects’ with non-empty classes Ci ⊂ O, the discrete SSQ criterion (also
termed: variance criterion, inertia, or trace criterion) is given by

gn(C) :=
k

i=1


∈Ci

||x − xCi ||2 → min
C

(1)

where xCi
denotes the centroid of the data points x ’belonging’ to class

Ci (i.e. with  ∈ Ci). We look for a k-partition of O with minimum criterion
2 The determination of an appropriate number k of classes is beyond the scope of
this article.
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value gn(C). The one-parameter optimization problem (1) is related, and even
equivalent, to the two-parameter optimization problem

gn(C,Z) :=
k

i=1


∈Ci

||x − zi||2 → min
C,Z

(2)

where minimization is also w.r.t. all systems Z = (z1, ..., zk) of k points
z1, ..., zk from IRp (class representatives, class prototypes). This results from
part (i) of the following theorem:

Theorem 1:
(i) For any fixed k-partition C the criterion gn(C,Z) is partially minimized
w.r.t. Z by the system of class centroids Z∗ = (xC1 , ..., xCk

) =: Z(C):

gn(C,Z) ≥ gn(C,Z∗) =
k

i=1


k∈Ci

||xk − xCi ||2 = gn(C) for all Z. (3)

(ii) For any fixed prototype system Z the criterion gn(C,Z) is partially min-
imized w.r.t. C by any minimum-distance partition C∗ := (C∗

1 , ..., C
∗
k) =:

C(Z) induced by Z, i.e. with classes given by C∗
i := { ∈ O | d(x, zi) =

minj=1,...,k d(x, zj)} (i = 1, ..., n) where d(x, z) = ||x − z||2 is the squared
Euclidean distance:

gn(C,Z) ≥ gn(C∗,Z) =
n

=1

min
j=1,...,k

{ ||x − zj ||2 } =: γn(Z) for all C. (4)

Remark 1: The previous theorem shows that the minimization problem (2)
has three essentially equivalent formulations

(A) gn(C,Z)→ min(C,Z), i.e., (2),
(B) gn(C) := gn(C,Z∗)→ minC , i.e., (1) and
(C) γn(Z) := gn(C∗,Z)→ minZ (’best location problem’).

All three minimum values are equal, and any solution of one of the problems
generates a solution of the two other ones. Mutatis mutandis this same re-
mark applies also to the two-parameter clustering criteria presented below
such that each optimization problem has three equivalent formulations (A),
(B), (C).

A broad range of methods has been designed in order to minimize the discrete
criteria (1) and (2), either exactly or approximately. They can be roughly
grouped into enumeration methods, mathematical and combinatorial pro-
gramming for exact minimization (Hansen and Jaumard 1997, Grötschel and
Wakabayashi 1989), integer, linear, quadratic, and dynamic programming
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(Jensen 1969, Vinod 1969, Rao 1971), van Os 2000), heuristical and branch
& bound methods (see also Anderberg 1973, Mulvey and Crowder 1979).

The k-means algorithm tries to approximate an optimum k-partition by it-
erating the partial minimization steps (i) and (ii) from Theorem 1, in turn.
It proceeds as follows3:

t = 0: Begin with an arbitrary prototype system Z(0) = (z(0)
1 , ..., z

(0)
k ).

t→ t+ 1:
(i) Minimize the criterion gn(C,Z(t)) w.r.t. the k-partition C, i.e., determine

a minimum-distance partition C(t+1) := C(Z(t)).
(ii) Minimize the criterion gn(C(t+1),Z) w.r.t. the prototype system Z, i.e.,

calculate the system of class centroids Z(t+1) := Z(C(t+1)).
Stopping: Iterate the steps (i) and (ii) until stationarity.

By construction, this algorithm yields a sequence Z(0), C(1),Z(1), C(2), ... of
prototypes and partitions with decreasing values of the criteria (1) and (2)
that converge to a (typically local) minimum value.

Remark 2: In mathematical terms, the k-means algorithm is a relaxation
method for minimizing a function of several parameters by iterative partial
minimization steps (see also Mulvey and Crowder 1979), and also called an
alternating optimization method.

Remark 3: In psychometric contexts, the SSQ criterion can be considered
as the approximation error in a linear factorial model X = WZ + e. Here
X = (x1, ..., xn) is the n × p data matrix, Z = (z1, ..., zk) the k × p matrix
of class prototypes, and W = (wi) the binary n × k matrix that specifies
the partition C with wi = 1 for  ∈ Ci, and wi = 0 else. In fact, we have
gn(C,Z) = |||X −WZ|||2 = |||e|||2 :=

n
=1

p
j=1 e

2
j (where |||e|||2 denotes

the trace norm of matrices).

Continuous SSQ criterion for space dissection: Considering x1, ..., xn

as realizations of a random vector X with distribution P in IRp, we may
formulate the following ’continuous’ analogues of (1) and (2): We look for a
k-partition B = (B1, ..., Bk) of IRp with minimum value

g(B) :=
k

i=1



Bi

||x− E[X|X ∈ Bi]||2 dP (x) → min
B

. (5)

As before we can relate (5) to a two-parameter optimization problem:

g(B,Z) :=
k

i=1



Bi

||x− zi||2 dP (x) → min
B,Z

(6)

and formulate the analogue of Theorem 1:
3 This is the batch version of the k-means algorithm; see Remark 4.
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Theorem 2:
(i) For any fixed k-partition B of IRp the criterion g(B,Z) is partially min-
imized w.r.t. Z by the prototype system Z∗ = (z∗1 , ..., z

∗
k) =: Z(B) given by

the conditional expectations z∗i := E[X|X ∈ Bi] of Bi:

g(B,Z) ≥ g(B,Z∗) =
k

i=1



Bi

|| x− E[X|X ∈ Bi] ||2 = g(B) for all Z. (7)

(ii) For any fixed prototype system Z the criterion g(B,Z) is partially mini-
mized w.r.t. B by any minimum-distance partition B∗ = (B∗1 , ..., B

∗
k) =: B(Z)

generated by Z, i.e. with classes given by B∗i := {x ∈ IRp | d(x, zi) =
minj=1,...,k{d(x, zj)} } (i = 1, ..., n):

g(B,Z) ≥ g(B∗,Z) =


X
min

j=1,...,k
{||x− zj ||2} dP (x) =: g(Z) for all B .(8)

It is obvious that Theorem 2 can be used to formulate, and justify, a contin-
uous version of the k-means algorithm. However, in contrast to the discrete
case, the calculation of the class centroids might be a computational problem.

3. First instances of SSQ clustering and k-means

The first formulation of the SSQ clustering problem I know has been pro-
vided by Dalenius (1950) and Dalenius and Gurney (1951) in the framework
of optimum ’proportional’ stratified sampling: For estimating the expectation
µ = E[X] of a real-valued random variable X with distribution density f(x)
(e.g., the income of persons in a city), the domain (−∞,+∞) ofX is dissected
into k contiguous intervals (’strata’, ’classes’) Bi = (ui−1, ui] (i = 1, ..., k+1,
with u0 = −∞ and uk+1 =∞) and from each stratum Bi a fixed number ni

of persons is sampled where ni = n ·P (Bi) is proportional to the probability
mass of Bi. This yields n real data x1, ..., xn. The persons  with income value
x in Bi build a class Ci with class average z∗i := xCi

(i = 1, ..., k). The linear
combination µ̂ :=

k
i=1(ni/n) ·xCi

provides an unbiased estimator of µ with
variance given by the SSQ criterion: V ar(µ̂) = g(B)/n. Dalenius wants to
determine a k-partition B with minimum variance, i.e., maximum accuracy
for µ̂ – this means the continuous clustering problem (5).

Dalenius did not use a k-means algorithm for minimizing (5), but a ’shooting’
algorithm that is based on the fact that for an optimum partition B of IR1

the class boundaries ui must necessarily lie midway between the neigbouring
class centroids such that ui = (z∗i + z∗i+1)/2 or z

∗
i+1 = 2ui − z∗i must hold for

i = 1, ..., k − 1. Basically, he constructs a sequence z1 < u1 < z2 < u2 < · · ·
of centers and boundaries by
– choosing, for i = 1, an initial value z1 ∈ IR1

– determining, for i = 1, the upper boundary ui of Bi = (ui−1, ui] from the
equation E[X|X ∈ Bi] = [

 ui

ui−1
xf(x)dx]/[

 ui

ui−1
f(x)dx] != zi (the expec-
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tation is an increasing function of ui)
– then calculating the next centroid by zi+1 = 2ui − zi

– and iterating for i = 2, 3, ..., k.
By trial and error, the initial value z1 is adapted such that the iteration stops
with k classes and the k-th upper boundary uk =∞. A ’data version’ of this
approach for minimizing (1) has been described, e.g., by Strecker (1957),
Stange (1960), and Schneeberger (1967).

Steinhaus (1956) was the first to propose explicitly the k-means algorithm
in the multidimensional case. His motivation stems from mechanics (even if
he refers also to examples from anthropology and industry): to partition a
heterogeneous solid X ⊂ IRp with internal mass distribution f(x) into k sub-
sets B1, ..., Bk and to minimize (6), i.e., the sum of the partial moments of
inertia with respect to k points z1, ..., zk ∈ IRp by a suitable choice of the
partition B and the zi’s. He does not only describe the (continuous version
of the) k-means algorithm, but also discusses the existence of a solution for
(6), its uniqueness (’minimum parfait’, examples and counterexamples), and
the behaviour of the sequence of minimum SSQ values for k →∞.
The first to propose the discrete k-means algorithm for clustering data in
the sense of minimizing (1), was Forgy (1965)4. In a published form this fact
was first reported by Jancey (1966a) (see also Jancey 1966b). The k-means
method became a standard procedure in clustering and is known under quite
different names such as dynamic clusters method (Diday 1971, 1973, 1974a),
iterated minimum-distance partition method (Bock 1974), nearest centroid
sorting (Anderberg 1973), etc.

Remark 4: The name ’k-means algorithm’ was first used by MacQueen (1967),
but not for the ’batch algorithm’ from Section 2. Instead he used it for his se-
quential, ’single-pass’ algorithm for (asymptotically) minimizing the continu-
ous SSQ criterion (5) on the basis of a sequence of data points x1, x2, ... ∈ IRp

sampled from P 5: The first k data (objects) define k initial singleton classes
C

(k)
i = {i} with class centroids z

(k)
i := x

C
(k)
i

= xi (i = 1, ..., k). Then, for
 = k+1, k+2, ..., the data x were sequentially observed and assigned to the
class C(−1)

i with closest class centroid z
(−1)
i := x

C
(−1)
i

and (only) its class

centroid was updated: z()
i := x

C
()
i

= z
(−1)
i + (x − x

C
(−1)
i

)/|C()
i |. When

stopping at some ’time’ T , the minimium-distance partition B(Z(T )) of IRp

induced by the last centroid system Z(T ) = (x
C

(T )
1

, ..., x
C

(T )
k

) approximates a

4 Forgy’s abstract of his talk does not explicitly mention the k-means algorithm,
but details of his lecture were described by Anderberg (1973), p. 161 and Mac-
Queen (1967) p. 294. – The more or less informal paper by Thorndike (1953)
describes a sequential relocation procedure that is, however, not directly linked
to his clustering criterion.

5 This procedure has been proposed by Sebestyen (1962) as well.
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(local) solution of (5) if T is large. – In many texts, the term ’k-means algo-
rithm’ is used for this single-pass procedure, but refers often to some similar
sequential clustering algorithms (see, e.g, Chernoff 1970). In Späth (1975) the
batch-version of k-means is called HMEANS, whereas KMEANS denotes an
algorithm that exchanges single objects between classes in order to decrease
(1). Hartigan (1975) uses the term ’k-means’ for various algorithms dealing
with k class centroids, e.g. for Späth’s exchange algorithm (on page 85/86),
and k-means as described in our Section 2 is one of several options mentioned
on page 102 of Hartigan (1975) (see also Hartigan and Wong 1979).

In computer science and pattern recognition communities the k-means algo-
rithm is often termed Lloyd’s algorithm I. In fact, Lloyd (1957) considers the
continuous SSQ clustering criterion (6) in IR1 in the context of pulse-code
modulation: ’Quantization’ means replacing a random (voltage) signal X by
a discretized approximate signal X̂ that takes a constant value zi (’quan-
tum’) if X belongs to the i-th class Bi of the partition B = (B1, ..., Bk) of
IR1 such that X̂ = zi iff X ∈ Bi (i = 1, ..., k). Optimum quantification means
minimization of the criterion (6). Lloyd reports the optimality of the class
centroids z∗i = E[X|X ∈ Bi] for a fixed partition B and describes the one-
dimensional version of the k-means algorithm as his ’Method I’ whereas his
’Method II’ is identical to the ’shooting method’ of Dalenius.

4. Generalized k-means algorithms

The two-parameter SSQ clustering criteria (2) and (6) have been generalized
in many ways in order to comply with special data types or cluster proper-
ties, and work also in a probabilistic framework. In the discrete case, typical
criteria for have the two-parameter form

gn(C,Z) :=
k

i=1


∈Ci

d(, zi)→ min
C,Z

(9)

where d(, z) measures the dissimilarity between an object  and a class pro-
totype z (sometimes written as d(x, z) or dz etc., depending on the context).
There is much flexibility in this approach since
(1) there is almost no constraint on the type of underlying data (quantitative

and/or categorical data, shapes, relations, weblogs, DNA strains, images)
(2) there are many ways to specify a family P of appropriate or admissi-

ble ’class prototypes’ z to represent specific aspects of the
clusters (points, hyperspaces in IRp, subsets of O, order relations),

(3) there exists a wealth of possibilities to choose the dissimilarity measure
d, and we may, additionally, introduce weights w for the objects  ∈ O.

In all these cases, the following generalized k-means algorithm can be applied
in order to attain a (locally or globally) optimum configuration (C,Z):
t = 0: Begin with an arbitrary prototype system Z(0) = (z(0)

1 , ..., z
(0)
k ).
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t→ t+ 1:
(i) Minimize the criterion gn(C,Z(t)) w.r.t. the k-partition C from P.

Typically, this yields a minimum-distance partition C(t+1) = C(Z(t))
with k classes C(t+1)

i := { ∈ O | d(, z(t)
i ) = minj=1,...,k d(, z

(t)
j ) }.

(ii) Minimize the criterion gn(C(t+1),Z) w.r.t. the prototype system Z.
Often, this amounts to determining, for each class Ci = C

(t+1)
i , a ’most

typical configuration’ z(t+1)
i in the sense:

Q(Ci, z) :=

∈Ci

d(, z) → min
z∈P

. (10)

Stopping: Iterate the steps (i) and (ii) until stationarity.

The first paper to propose the general criterion (9) and its generalized k-
means method is Maranzana (1963): He starts from a n × n dissimilarity
matrix (dt) for n factories  = 1, ..., n in an industrial network where dt

are the minimum road transportation costs between  and t. He wants to
partition the set of factories into k classes C1, ..., Ck and to find a selection
Z = (z1, ..., zk) of k factories as ’supply points’ such that when supplying
all factories of the class Ci from the supply point zi ∈ O, the overall trans-
port costs are minimized in the sense of (9) where d(, zi) = d,zi

means the
dissimilarity between the factory (object)  and the factory (supply point)
zi ∈ O (where we have omitted object-specific weights from Maranzana’s
formulation). So the family P of admissible prototypes consists of all single-
tons from O and (ii) means determining the ’most cheapest supply point’ in
Ci. Kaufman and Rousseeuw (1987, 1990) termed this method ’partitioning
around medoids’ (the medoid or centrotype of a class Ci is the most typical
object in Ci in the sense of (10); see also Gordon 2000).

Many authors, including Diday (1971, 1973, 1974a) and Diday et al. (1979),
have followed the generalized clustering approach via (9) in various settings
and numerous variations and thereby obtained a plethora of generalized k-
means algorithms (see also Bock 1996b, 1996c). For example:
– We may use Mahalanobis-type distances ||x − zi||2Q or ||x − zi||2Qi

in (1)
instead of the Euclidean one, eventually including constraints for Q (Diday
and Govaert 1974, 1977: méthode des distances adaptatives; Späth 1985, chap.
3: determinant criterion)
– Similarly, a Lq or Minkowski distance measure may be used. In particular,
the case of the L1 distance has been considered by Vinod (1969), Massart et
al. (1983), and Späth (1975), chap. 3.5 (k-medians algorithm).
– Each cluster may be represented by a prototype hyperplane (instead of a
single point), resulting in principal component clustering (Bock 1974, chap.
17; Diday and Schroeder 1974a) and in clusterwise regression (Bock 1969,
Charles 1977, Späth 1979). For fuzzy versions of this approach see Bezdek et
al. (1981).
– In the case of high-dimensional data points (i.e., with a large number
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of variables) we may conjecture that a potential cluster structure is essen-
tially concentrated on a low-dimensional (s-dimensional) hyperplane and will
therefore assume that all class centers are located on the same (unknown)
s-dimensional hyperplane H in IRp. The resulting criterion

gn(C, H,Z) :=
k

i=1


∈Ci

||x − zi||2

=
k

i=1


∈Ci

||x − xCi
||2 +

k
i=1

|Ci| · ||xCi
− zi||2 → min

C,H,Z with zi∈H

is minimized by a k-means-like algorithm with three iterated partial mini-
mization steps: (i) minimizing w.r.t. Z (resulting in z∗i := projH(xCi

); (ii)
minimizing w.r.t. H (resulting in the hyperplane spanned by the s eigenvec-
tors of the scatter matrix B(C) :=

k
i=1 |Ci| · (xCi

−x)(xCi
−x) that belong

to the s largest eigenvalues of B(C)); (iii) minimizing w.r.t. the partition
C yielding the minimum-distance partition C of the projected data points
y := projH(x) generated by the center system Z (projection pursuit clus-
tering; see Bock 1987, 1996c;, Vichi 2005);
– Another option proceeds by characterizing a class by the ’most typical sub-
set’ (pair, triple,...) of objects from this class in an appropriate sense (Diday
et al. 1979).

A major step with new insight was provided by Diday and Schroeder (1974a,
1974b, 1976) and Sclove (1977) who detected that under a probabilistic ’fixed-
partition’ clustering model, maximum-likelihood estimation of an unknown
k-partition C leads to a clustering criterion of the type (9) and can there-
fore be handled by a k-means algorithm6. The fixed-partition model con-
siders the data x1, ..., xn as realizations of n independent random vectors
X1, ..., Xn with distributions from a density family f(·;ϑ) (w.r.t. the Lebesgue
or counting measure) with parameter ϑ (e.g., a normal, van Mises, loglinear,...
distribution). It assumes the existence of a fixed, but unknown k-partition
C = (C1, ..., Ck) of O together with a system θ = (ϑ1, ..., ϑk) of class-specific
parameters such that the distribution of the data is class-specific in the sense
that

X ∼ f(·;ϑi) for all  ∈ Ci and  = 1, ..., n.

Then maximizing the likelihood of (x1, ..., xn) is equivalent to

gn(C, θ) :=
k

i=1


∈Ci

[− log f(x;ϑi)] → min
C,θ

. (11)

Obviously this returns the former criterion (9) with zi ≡ ϑi,Z ≡ θ, and
d(, zi) = − log f(x;ϑi). The minimum-distance assignment of an object  in
6 This fact was already known before, e.g., in the case of SSQ and the normal
distribution, but these authors recognized its importance for more general cases.
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(i) means maximum-likelihood assignment to a class Ci, and in (ii) optimum
class prototypes are given by the maximum-likelihood estimate ϑ̂i of zi ≡ ϑi

in Ci. By assuming a normal distribution density f , we can find probabilistic
models for most of the criteria and k-means options cited above and insofar
sketch the domain of application of these criteria.

A major advantage of this probabilistic approach resides in the fact that we
can design meaningful clustering criteria also in the case of qualitative or bi-
nary data, yielding, entropy clustering and logistic clustering methods (Bock
1986), or models comprising random noise or outliers (Windham 200, Galle-
gos 2002, Gallegos and Ritter 2005). – A detailed account of these approaches
is given, e.g., in Bock (1974, 1996a, 1996b, 1996c) and Diday et al. (1979).

5. Fuzzy k-means clustering

Relatively early the k-means approach has also been applied to the deter-
mination of an optimum ’fuzzy’ clustering of data points x1, ..., xn where an
object  is not always assigned to a single class Ci, but eventually to several
classes simultaneously, with appropriate degrees of membership. If ui denotes
the membership degree of object  in the ’fuzzy class’ Ui (with 0 ≤ ui ≤ 1
and
k

i=1 ui = 1), the matrix U = (ui) defines a ’fuzzy partition’ of the set
of objects (which is a classical or ’hard’ partition whenever all ui take values
0 or 1 only). In analogy to the SSQ criterion (2) an optimum fuzzy partition
is commonly defined by the ’fuzzy variance criterion’

g(U ,Z) :=
k

i=1

n
=1

ur
i · ||x − zi||2 → min

(U,Z)
(12)

where r > 1 is a given exponent7 (Bezdek and Dunn 1974, Bezdek 1981).

The ’fuzzy k-means algorithm’ for solving (12) starts with an initial set of
prototypes z1, ..., zk and iterates the two following partial minimization steps:

(i) Minimize (12) w.r.t. the fuzzy partition U (for a given prototype system
Z). The optimum fuzzy partition U∗ ≡ U(Z) is given by the membership
values:

u∗i :=
||x − zi||−2/(r−1)

k
i=1 ||x − zi||−2/(r−1)

=
d(Z)k

i=1 ||x − zi||−2/(r−1)
(13)

where k · d(Z) is the harmonic mean of the k transformed distances ||x −
zi||−2/(r−1) for i = 1, ..., k (a proof using Jensen’s inequality is provided by
Bock 1979).
(ii) Minimize (12) w.r.t. the prototype system Z (for a given fuzzy partition

7 For r = 1 minimization of (12) always results in a hard partition such that
’fuzziness’ plays no role in this case; see Fisher (1958).
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U). The solution Z∗ ≡ Z(U) is given by the weighted class centroids

z∗i = xUi :=
n

=1 u
r
ikxn

=1 u
r
i

i = 1, ..., k. (14)

It is interesting to note that by substituting, for a given Z, the solutions
U∗ = U(Z) and Z∗∗ := Z(U∗) into the criterion (12), we obtain

γ(Z) := g(U∗,Z∗∗) =
n

k=1

dk(Z)r−1 → min
Z

. (15)

This shows that fuzzy clustering minimizes essentially the average of the
(transformed) harmonic means of the transformed Euclidean distances form
the data points x to the prototypes in Z, by an optimum choice of Z.

6. Convexity-based criteria and the k-tangent method

The derivation of the k-means algorithm in Section 2 shows that it relies
essentially on the fact that the intuitive SSQ optimization problem (1) in-
volving only one parameter C has an equivalent version (2) where optimiza-
tion is w.r.t. two parameters C and Z. In order to extend the domain of
applicability of the k-means algorithm we may ask, more generally, if for an
arbitrary (e.g., intuitively defined) one-parameter clustering criterion there
exists a two-parameter version such that both resulting optimization prob-
lems are equivalent and a k-means algorithm can be applied to the second
one. This problem has been investigated and solved by Windham (1986, 1987)
and Bryant (1988). In the following we describe a special situation where the
answer is affirmative and leads to a new k-tangent algorithm that provides a
solution to various non-classical clustering or stratification problems (Bock
1983, 1992, 2003, Pötzelberger and Strasser 2001).

We consider the following ’convexity-based’ clustering criterion for data points
x1, ..., xn ∈ IRp that should be maximized w.r.t. the k-partition C = (C1, ..., Ck):

kn(C) :=
k

i=1

(|Ci|/n) · φ(xCi) → max
C

. (16)

Here φ(·) is a prespecified smooth convex function. Obviously (16) is a gen-
eralization of the classical SSQ clustering problem (1) since for φ(x) := ||x||2
the problem (16) reduces to (1). We may also consider a continuous version
of this problem that involves a probability distribution P on IRp and looks
for an optimal k-partiton B = (B1, ..., Bk) of IRp in the sense:

k(B) :=
k

i=1

P (Bi) · φ(E[X|X ∈ Bi]) → max
B

. (17)
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For φ(x) := ||x||2 this is equivalent to (5). An even more general version of
this problem is given by:

K(B) =
k

i=1

P (Bi) · φ(E[λ(X)|X ∈ Bi])) → max
B

(18)

where X is a random variable in a space X (e.g., X = IRp) with distribution
P , λ is a (quite arbitrary) function X → IRq and φ is a convex function
X → IRq (for two special choices see below). The optimum k-partition B =
(B1, ..., Bk) of X can be approximated by a k-means type algorithm if we can
find a equivalent ’dual’ two-parameter criterion G(B,Z) with an appropriate
’prototype’ system Z = (z1, ..., zm) ∈ IRq. In fact, it has been shown by
Bock (1983, 1992, 2003) that maximization of K(B) is equivalent to the
minimization problem

G(B,Z) :=
k

i=1



Bi

[φ(λ(x))− t(λ(x); zi)] dP0(x) → min
B,Z

(19)

where Z = (z1, ..., zk) ∈ IRp and t(u; z) := φ(z) + φ(z)(u− z) (with u ∈ IRq)
is the tangent (support plane) of the manifold y = φ(u) in the support point
z ∈ IRq ([....] is a weighted ’volume’ between the manifold and the correspond-
ing segments of the tangents such that (19) is termed the ’minimum volume
problem’). Therefore we can apply the alternating partial minimization de-
vice. The resulting method is termed ’k-tangent algorithm’ and comprizes
the steps:
(i) For a given support point system Z, determine the ’maximum-tangent
partition’ B with classes defined by maximum tangent values:

Bi := { x ∈ X | t(λ(x); zi) = max
j=1,...,k

t(λ(x); zj) }

(ii) For a given k-partition B of X determine the system Z of class-specific
centroids:

zi := E[ λ(X)] | X ∈ Bi ] i = 1, ..., k.

Iteration of (i) and (ii) yields a sequence of partitions with decreasing values
in (18) and (19). - The theoretical properties of the optimum partitions for
(16) and (17) have been investigated by Pötzelberger and Strasser (2001). Re-
lated approaches (dealing with Bregman distance) were proposed by Dhillon
et al. (2003b) and Banerjee et al. (2004a).

We conclude with two examples that show that the k-tangent algorithm can
be applied to practical problems:

(a) Optimum discretization and quantization:
There are applications where a random vector X (with two alternative distri-
bution P0, P1) must be discretized into a given number of k classes B1, ..., Bk
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in a way that maximizes the dissimilarity between the two resulting discrete
distributions P0 = (P0(B1), · · · , P0(Bk)) and P1 = (P1(B1), · · · , P1(Bk)).
We may measure this dissimilarity by the classical non-centrality parameter
and obtain the maximization problem:

K(B) =
k

i=1

(P1(Bi)− P0(Bi))2

P0(Bi)
=

k
i=1

P0(Bi) · (1−
P1(Bi)
P0(Bi)

)2 → max
B

.

Writing φ(u) := (1 − u)2 we see that this amounts to maximizing Csiszár’s
φ-entropy:

K(B) =
k

i=1

P0(Bi) · φ(
P1(Bi)
P0(Bi)

) → max
B

. (20)

Since P1(Bi)/P0(Bi) = E0[λ(X)|X ∈ Bi] with the likelihood ratio λ(x) :=
(dP1)/dP0)(x) this latter problem has the general form (18) with P ≡ P0

and so the optimum discretization can be found by the k-tangent algorithm
(Bock 1983, 1992).

(b) Simultaneous clustering of rows and columns of a contingency table:
A second example is provided when considering a a × b contingency table
(probability distribution) N = (puv) for two qualitative variables U, V , both
with a (large) set of categories U = {1, ..., a} and V = {1, ..., b}, respec-
tively, where puv is the relative frequency (probability) of observing the case
(U, V ) = (u, v). We consider the problem of reducing the number of cat-
egories by clustering the a rows into a m-partition A = (A1, ..., Am) with
classes A1, ..., Am ⊂ U , and simultaneously the b columns into a -partition
B = (B1, ..., B) with classes B1, ..., B ⊂ V8. Clustering should be performed
such that row clusters and column clusters are as much dependent as possible
(such that knowing, e.g., the row cluster label of an item provides optimum
information on the corresponding column cluster label, and conversely).

This idea may be formalized as looking for a pair (A,B) of partitions such that
the φ-divergence between the aggregated distribution P ∗ = (P (Ai×Bj))m×

on U × V with
P (Ai ×Bj) := P (U ∈ Ai, V ∈ Bj) =


u∈Ai


v∈Bj

puv

(i = 1, ...,m, j = 1, ..., ) and the corresponding distribution Q = (qij)m×

under independence, i.e. with
qij := P (U ∈ Ai) · P (V ∈ Bj) =: P1(Ai) · P2(Bj)

(i = 1, ...,m, j = 1, ..., ), is maximized:

g(A,B) :=
m

i=1

l
j=1

P1(Ai)P2(Bj) · φ(
P (Ai ×Bj)
P1(Ai)P2(Bj)

) → max
A,B

(21)

8 Simultaneous clustering of rows and columns is commonly called two-way clus-
tering, bi-clustering, co-clustering etc.
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Typical minimization algorithms for simultaneous clustering proceed by start-
ing from two initial partitions A,B and then partially maximizing w.r.t. A
and B in turn, until stationarity is obtained. In the case of (21) both steps
can be performed by using the k-tangent algorithm above (Bock 2003). In
fact, if we fix A and maximize w.r.t. B we can write g(A,B) in the form

g(A,B) =
l

j=1

P2(Bj)
m

i=1

P1(Ai)φ(
P (Bj |Ai)
P2(Bj)

)

=
l

j=1

P2(Bj)φA(EP2 [λ(V |A)]|V∈ Bj)→ max
A,B

(22)

where P1, P2 are the marginal distributions of U and V , and where we have
introduced the convex function φ(A)(x) :=

m
i=1 P1(Ai) · φ(xi) for x ∈ IRm,

and the vector λ(v|A) := (λ(v|A1), ..., λ(v|Am)) whose components are the
likelihood ratios λ(v|Ai) := P (V = v|U ∈ Ai)/P(V = v) (i = 1, ...,m). This
expression has the form (18) such that the k-tangent algorithm can be ap-
plied here.

A similar approach has been proposed by Dhillon (2003a) and Banerjee et
al. (2004b) and applied to simultaneously clustering the documents and key-
words in a database.

7. Conclusions

In this paper we have given a survey of k-means type algorithms form its ori-
gins to the modern state-of-the-art, thereby emphasizing the historical (and
not the technical) aspects. It appears that this method has been proposed
for solving (approximately) many specific optimization problems in cluster
analysis, often within a quite non-classical framework. This underpins the
importance of the k-means approach in spite of various deficiencies such a
finding typically only a local (and not a global) optimum, the critical role of
the initial partition, and the case of empty classes or ties. For more details
on technical issues and further generalizations we point, e.g., to the articles
by Steinley (2003, 2006a, 2006b).
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naissance des formes: la méthode des nuées dynamiques. Revue de Statistique
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